Winter School at Universitat Politècnica de Catalunya (2018)
Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of large-scale annotated datasets and affordable GPU hardware has allowed the training of neural networks for data analysis tasks which were previously addressed with hand-crafted features. Architectures such as convolutional neural networks, recurrent neural networks or Q-nets for reinforcement learning have shaped a brand new scenario in signal processing. This course will cover the basic principles of deep learning from both an algorithmic and computational perspectives.
Deep Learning for Speech and Language
2nd Winter School at Universitat Politècnica de Catalunya (2018)
Language and speech technologies are rapidly evolving thanks to the current advances in artificial intelligence. The convergence of large-scale datasets and affordable GPU hardware has allowed the training of neural networks for data analysis tasks which were previously addressed with hand-crafted features. Applications such as machine translation or speech recognition can be tackled from a neural perspective with novel architectures that combine convolutional and/or recurrent models with attention. This winter school overview the state of the art on deep learning for speech and language ad introduces the programming skills and techniques required to train these systems.